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J-Resistance Curves of Aluminum Specimens Using Moire Interferometry

B. S.-J. Kang , M.S. Dadkhah and A.S. Kobayashi

ABSTRACT

Errors involved in using the approximate Jfevaluation procedure are

evaluated by comparing the resistance curves of large 2024-0 and 5052-H32

aluminum, singlefedge cracked, cruciform specimens under uniaxial and biaxial

loadings with those obtained by an exact procedure. This comparative study

shows that under uniaxial loading, the Joresistance curves obtained by the

approximate procedure are within six percent of those obtained by the exact

procedure. For the biaxial loading, however, the difference is about eighteen

percent. The specimen size and geometry dependence of the J-resistance curves

of 2024-0 and 5052-H32 aluminum specimens are also discussed. ,'lH1"' 4. ,

INTRODUCTION

At present, most elastic-plastic fracture mechanics (EPFM) methodologies

are based on the J-integral or the crack opening displacement (COD) approach.

The J-resistance curve (JR curve) approach in particular has been popular for

evaluating elastic-plastic stable crack growth and ductile fracture of high

toughness materials, such as A533B steel [il, and 2219-T87 aluminum [2].

Questions have been raised, however, regarding the specimen size and geometry

dependence of the J-resistance curve (3,4,51, i.e. the use of J-resistance

curve obtained by small laboratory specimens for predicting elastic-plastic

crack growth resistance in large engineering structures.

Several experimental methods have been proposed for determining the

J-Aa (JR) curve. Generally the J values are determined from the measured

far-field load versus load-line displacement curve and the amount of crack
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growth, Aa, is determined by such methods as the unloading compliance method

[6], the electric potential method [71, the key curve method [8] and the

ultrasonic method [9]. In contrast to these far-field methods, the authors

have presented an approximate [10.11] and an exact [121 procedures for

determining the J-integral values based on the displacement fields obtained by

moire interferometry. These two procedures are based on the original

J-integral definition for evaluating the J values along a contour either the

near, middle or far crack-tip fields, such as those shown in Figs. 1 and 2.

The purpose of this paper is to assess the accuracy of the J values evaluated

by the simple and convenient approximate procedure through a comparative study

with those values obtained by the exact procedure. We then extend the analysis

to che di.cussiin of the size and specimen dependence of the J-based

resistance curves of 2024-0 and 5052-H32 aluminum specimens under uniaxial

and biaxial loadings.

ASSESSMENT OF THE APPROXIMATE J-EVALLATION PROCEDURE

The approximate J-evaluation procedure [10] is based on the assumption

that two-dimensional states of stress and strain in a fracture specimen can be

approximated by the uniaxial states of stress and strains. The uniaxial state

can be determined by using only the u -displacement field obtained by they

moire interferometry. This simplification is theoretically correct when the

integration contour is taken along a far field location, i.e. the edges, of a

single-edge-notched (SEN) specimen shown in Fig. 1. As for J-e-aluation along

a near crack tip contour (also shown in Fig. 1), a sensitivity study [10]

showed that the approximate J-evaluation procedure incurred a fourteen percent

error in the elastic crack-tip stress field and decreased to less than one

percent in the HRR field [13,141.

In this paper, we present further application of the approximate

J-evaluation procedure in large 2024-0 and 5052-H32 aluminum single-edge

cracked, cruciform specimens which were subjected to uniaxial and biaxial

loadings. The moire interferometry tests were conducted by the second author

who developed an exact J-evaluation procedure [12,15] which utilize both ux

and u v moire displacement fields. Here, we apply the approximate J-evaluaLior.

nrr)oire fr the same u moire fringe patterns and compare these results toy
those obtained by the exact J-evaluation procedure. Material properties of

the specimens are shown in Table I.
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RESULTS

Accuracy Assessment

Near- and far-field J values were evaluated by both procedures. Figures 3

and 4 show typical moire interferometry patterns corresponding to the u
y

displacement field in an uniaxially loaded 5052-H32 and an biaxially loaded

2024-0 aluminum cruciform specimens. The J values evaluated by the

approximate and the exact J-evaluation procedures are listed in

Tables 2, 3 and 4. These results show that the J values, which were obtained

by the approximate procedure, are within six percent of those obtained by the

exact procedure for uniaxially loaded cruciform specimens. However, the

difference is about twenty percent for those under biaxial loading. This

discrepancy is due to the region of large biaxial state of stress which

invalidates the assumption of a dominant uniaxial state for the simplified

approximation procedure.

Geometry Dependence of J-Aa Resistance Curve

Having proved the accuracy of the approximate J-evaluation procedure,

previous JR curves generated for small single edge notched (SEN) specimens

using the approximate procedure can thus be used in a comparative study with

those generated by the large cruciform specimens. Figure 5 shows superposed

plots of the J-Aa curves for small 2024-0 aluminum SEN specimens and large

single-edge cracked cruciform specimens [11,15]. For the limited amount of

crack growth considered in this study, the results indicate that the JR curve

is specimen size and geometry independent. This conclusion is reinforced by

similar superposed plots of the COD and the CTOD resistance curves shown in

Figs. 6 and 7. Figure 8 shows superposed plots of the J-Aa curves for small

SEN and large 5052-H32 aluminum cruciform specimens. As shown in Fig. 8, the

JR curves start to deviate after about 0.6 mm of crack extension. Figure 9

shows superposed plots of the corresponding COD resistance curves. Similar

deviation in the two curves after crack extension of 0.6 mm is observed.

DISCUSSION

The advantages of the approximate J-estimation procedure, which utilize a

simplified contour integration based solely on the the dominant u
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displacement field, are; i) simpler optics in the moire interferometry setup,

and il) the associated reduction in the data evaluation effort. Results of

the comparative study of the J values obtained by the approximate and exact

J-evaluation procedures indicate, however, that the approximate procedure can

be used without incurring large errors only under uniaxial loading.

In the following, the specimen size and geometry dependence of the

J-based resistance curves of 2024-0 and 5052-H32 aluminum specimens are

discussed.

J-Controlled Crack Growth

The base for the J-resistance curve approach for stable crack growth is

the condition of J-controlled crack growth. Under such condition, nearly

proportional loading must exist at the crack tip region and the amount of

crack growth must be small compared to the region dominated by the HRR fields

[13,14]. Within the condition of J-controlled crack growth, the J-integral

and the related dJ/da are meaningful parameters for character iing, the crack

growth [16,17]. Also, within the range of J-controlled crack growth, the

J-resistance curve is unique and independent of the specimen size and

geometry. Uncertainties arise as how to define the maximum range of crack

extension for J-controlled crack growth [3]. Shih et.al (1] proposed that

crack growth be limited to six percent of the ligament to ensure J-controlled

crack growth. Recent studies [18] of JR curves calculated using ASTM E1152,

however, showed no specimen size dependence under large crack extension far

in excess of the ASTM standard. In our previous studies based on the moire

interferometry data [10,11,19], a J-dominated region was found in 2024-0

aluminum specimens (a strain hardening material, see Table 1) and did not

exist in 5052-H32 aluminum specimens (a nonhardening material, see Table 1).

Figure 5 shows that for strain hardening material such as 2024-0 aluminum of

the same specimen thickness, the JR curve is independent of the specimen size

and geometry for crack extension at least up to 1 mm. For low strain

hardening material, such as 5052-H32 aluminum, Figure 8 shows that the JR

curves 1ipviate afttL 0.6 mm crack extension in this nonhardening material

Where the J-dominated zone shrinks to zero [20,21]. Thus some amount of

strain hardening is essential for a valid JR curve, which can be used to

characterize ductile stable crack growth, to exist.

4



CONCLUSIONS

I. The errors involved in using the approximate J-evaluation procedure

in large 2024-0 and 5052-H32 aluminum, single-edge cracked, cruciform

specimens under uniaxial and biaxial loadings are evaluated by comparing

these results with those obtained by an exact procedure. This comparative

study shows that under uniaxial loading, the J-integral values obtained by

the approximate procedure are within six percent of those obtained by the

exact procedure. For the biaxial loading, however, the difference is about

eighteen percent.

2. Specimen size and geometry dependence of the JR curves of 2024-0 and

5052-H32 aluminum specimens are discussed. For 2024-0 aluminum specimens

of the same thickness, the JR curve is independent of the specimen size and

geometry for crack growth at least up to 1 mm. For 5052-H32 aluminum,

however, the JR curves deviate after 0.6 mm crack growth. These results

suggest nat some amount of strain hardening is necessary to ensure a

specimen size and geometry independent JR curve for characterizing ductile

stable crack growth.
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Table 1 Test Material Properties

Aluminum Yield Stress Young's Modulus n
MPa (ksi) MPa (ksi)

2024-0 67 (9.7) 74200 (10760) 1.0 4

5052-H32 190 (27.6) 70000 (10150) 1.0 16

C Cr n=--T + a --

y y y

(Ramberg-Osgood Relation)

Table 2 Measured J-integral Values for Different Contours in a Uniaxially
Loaded 5052-H32 Aluminum Single-edge Cracked, Cruciform Specimen

Applied Crack J* (kPa-m) J** (kPa-s) % Difference
Load Extension Contour Contour Contour
(N) (u) # 1 # 2 # 1 # 2 # 1 # 2

2371 0.0 4.80 5.20 4.22 4.35 12% 16%

3812 0.2 8.00 7.30 6.76 6.32 15% 13%

4404 0.36 12.10 11.60 12.50 12.30 31 6%

5253 0.50 18.45 17.10 18.40 19.20 0.3% 12%

5760 0.75 23.81 25.29 23.40 23.62 2% 6%

6779 1.35 42.80 40.40 42.20 41.60 1% 3%

7455 1.95 66.70 64.70 66.60 61.20 0.2% 5%

* Measured J values based on the exact J-evaluation procedure
** Measured J values based on the approximate J-evaluation procedure
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Table 3 Measured J-integral Values for Different Contours in a Uniaxially
Loaded 2024-0 Aluminum Single-edge Cracked, Cruciform Specimen

Applied, Crack J* (kPa-m) J** (kPa-m) % Difference
Load Extension contour Contour Contour
(N) (mm) # 1 # 2 # 1 # 2 # 1 s 2

1019 0.0 0.25 0.26 0.21 0.22 16% 15%

1490 0.1 1.90 1.76 1.88 1.81 1% 3%

2576 0.33 6.30 6.70 6.20 6.30 2% 6%

3283 0.96 19.70 20.30 18.80 18.90 5% 71

3763 1.34 31.00 28.50 31.70 30.10 2% 6%

* Measured J values based on the exact J-evaluation procedure

** Measured J values based on the approximate J-evaluation procedure

Table 4 Measured J-integral Values for Different Contours in a Biaxially
Loaded 2024-0 Aluminum Single-edge Cracked, Cruciform Specimen

Applied Applied Crack J (kPa-m) J (kPa-m) % Difference

Load(Y) Load(X) Extension Contour Contour Contour

(N) (N) (mm) # I # 2 # I # 2 # 1 # 2

4066 2086 0.04 4.00 3.80 3.26 3.08 191 19%

5489 2896 0.50 11.00 10.50 9.25 9.11 16% 13%

5591 3305 0.85 18.10 18.40 14.30 14.70 21% 20%

5845 3888 1.34 31.00 29.00 25.70 24.36 17% 16%

6076 3914 1.40 32.00 29.20 26.00 25.10 19% 14%

6720 4524 1.68 34.00 31.00 28.50 28.00 161 101

6810 4626 2.20 50.00 47.00 40.50 39.80 19% 15%

* Measured J values based on the exact J-evaluation procedure

** Measured J values based on the approximate J-evaluation procedure
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Fig. 1 Single Edge Notched (SEN) Specimen and Contours for J
Evaluation.
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Fig. 2 Single Edge Cracked, Cruciform Specimen and Contours for
J Evaluation.
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Fig. 3 u -Displacement in a Uniaxially Loaded 5052-H32 Aluminum SingleY
Edge Cracked, Cruciform Specimen; Applied Load 5760 (N).
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Fig. 4 u Y-Displacement in a Biaxially Loaded 2024-0 Aluminum Single

y!

Edge Cracked, Cruciform Specimen; Applied Load
F x= 5489 (N), F y=2896 (N).
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Fig. 5 JR Curves of 2024-0 Aluminum Small SEN and Large Single Edge

Cracked, Cruciform Specimens.
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Fig. 6 COD Resistance Curves of 2024-0 Aluminum Small SEN and Large
Single Edge Cracked, Cruciform Specimens.
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Fig. 7 CTOD Resistance Curves of 2024-0 Aluminum Small SEN and Large
Single Edge Cracked, Cruciform Specimens.
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Fig. 8 1RCurves of 5052-H32 Aluminum Small SEN and Large Single

Edge Cracked, Cruciform Specimens.
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Fig. 9 COD Resistance Curves of 5052-H32 Aluminum Small SEN and
Large Single Edge Cracked, Cruciform Specimens.
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